Find numerically the greatest term in the expansion of (2+3x)9,when x=32.
Since (2+3x)9=29(1+3x2)9
Now, in the expansion of (1+3x2)9, we have:
Tr+1Tr=(9−r+1)r∣∣∣32x∣∣∣=(10−r)r∣∣∣32×32∣∣∣(∵x=3/2)=(10−rr)(94)=90−9r4r∴Tr+1Tr≥1⇒90−9r4r≥1⇒90≥13r⇒r≤9013=61213∴r≤61213
∴ Maximum value of r is 6 So greatest term=29.T6+1