Find numerically the greatest term in the expansion of (3−5x)11 when x=15
Since, (3−5x)11=311(1−5x3)11 Now in the expansion of (1−5x3)11, we have Tr+1Tr=(11−r+1)r∣∣∣−5x3∣∣∣=(12−r)r∣∣∣−53×5∣∣∣(∵x=15)
=(12−rr)(13)=12−r3r∴Tr+1Tr≥1⇒12−r3r≥1⇒4r≤12r≤3∴r=2,3
⇒ so, the greatest terms are T2+1 and T3+1