1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Eccentricity of Hyperbola
Find one-para...
Question
Find one-parameter families of solution curves of the following differential equations:
(or Solve the following differential equations)
(i)
d
y
d
x
+
3
y
=
e
m
x
, m is a given real number
(ii)
d
y
d
x
-
y
=
cos
2
x
(iii)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
(iv)
x
d
y
d
x
+
y
=
x
4
(v)
x
log
x
d
y
d
x
+
y
=
log
x
(vi)
d
y
d
x
-
2
x
y
1
+
x
2
=
x
2
+
2
(vii)
d
y
d
x
+
y
cos
x
=
e
sin
x
cos
x
(viii)
x
+
y
d
y
d
x
=
1
(ix)
d
y
d
x
cos
2
x
=
tan
x
-
y
(x)
e
-
y
sec
2
y
d
y
=
d
x
+
x
d
y
(xi)
x
log
x
d
y
d
x
+
y
=
2
log
x
(xii)
x
d
y
d
x
+
2
y
=
x
2
log
x
Open in App
Solution
i
We
have
,
d
y
d
x
+
3
y
=
e
m
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
3
Q
=
e
m
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
∫
3
d
x
=
e
3
x
Multiplying
both
sides
of
(
1
)
by
e
3
x
,
we
get
e
3
x
d
y
d
x
+
3
y
=
e
3
x
e
m
x
⇒
e
3
x
d
y
d
x
+
3
e
3
x
y
=
e
m
+
3
x
Integrating
both
sides
with
respect
to
x
,
we
get
y
e
3
x
=
∫
e
m
+
3
x
d
x
+
C
when
m
+
3
≠
0
⇒
y
e
3
x
=
e
m
+
3
x
m
+
3
+
C
⇒
y
=
e
m
x
m
+
3
+
C
e
-
3
x
y
e
3
x
=
∫
e
0
×
x
d
x
+
C
when
m
+
3
=
0
⇒
y
e
3
x
=
∫
d
x
+
C
⇒
y
e
3
x
=
x
+
C
⇒
y
=
x
+
C
e
-
3
x
Hence
,
y
=
e
m
x
m
+
3
+
C
e
-
3
x
,
where
m
+
3
≠
0
and
y
=
x
+
C
e
-
3
x
,
where
m
+
3
=
0
are
required
solutions
.
ii
We
have
,
d
y
d
x
-
y
=
cos
2
x
.
.
.
.
.
(
1
)
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
-
1
Q
=
cos
2
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
-
∫
d
x
=
e
-
x
Multiplying
both
sides
of
(
1
)
by
e
-
x
,
we
get
e
-
x
d
y
d
x
-
y
=
e
-
x
cos
2
x
⇒
e
-
x
d
y
d
x
-
e
-
x
y
=
e
-
x
cos
2
x
Integrating
both
sides
with
respect
to
x
,
we
get
y
e
-
x
=
∫
e
-
x
cos
2
x
d
x
+
C
⇒
y
e
-
x
=
I
+
C
.
.
.
.
.
(
2
)
Where
,
I
=
∫
e
-
x
cos
2
x
d
x
.
.
.
.
.
(
3
)
⇒
I
=
1
2
e
-
x
sin
2
x
-
1
2
∫
-
e
-
x
sin
2
x
d
x
⇒
I
=
1
2
e
-
x
sin
2
x
+
1
2
∫
e
-
x
sin
2
x
d
x
⇒
I
=
1
2
e
-
x
sin
2
x
-
1
4
e
-
x
cos
2
x
-
1
2
×
1
2
∫
-
e
-
x
×
-
cos
2
x
d
x
⇒
I
=
1
2
e
-
x
sin
2
x
-
1
4
e
-
x
cos
2
x
-
1
4
∫
e
-
x
cos
2
x
d
x
⇒
I
=
1
2
e
-
x
sin
2
x
-
1
4
e
-
x
cos
2
x
-
1
4
I
From
3
⇒
5
4
I
=
1
2
e
-
x
sin
2
x
-
1
4
e
-
x
cos
2
x
⇒
5
I
=
2
e
-
x
sin
2
x
-
e
-
x
cos
2
x
⇒
I
=
e
-
x
5
2
sin
2
x
-
cos
2
x
.
.
.
.
.
(
4
)
From
(
2
)
and
(
4
)
we
get
⇒
y
e
-
x
=
e
-
x
5
2
sin
2
x
-
cos
2
x
+
C
⇒
y
=
1
5
2
sin
2
x
-
cos
2
x
+
C
e
x
Hence
,
y
=
1
5
2
sin
2
x
-
cos
2
x
+
C
e
x
is
the
required
solution
.
iii
We
have
,
x
d
y
d
x
-
y
=
x
+
1
e
-
x
⇒
d
y
d
x
-
1
x
y
=
x
+
1
x
e
-
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
-
1
x
Q
=
x
+
1
x
e
-
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
-
∫
1
x
d
x
=
e
-
log
x
=
1
x
Multiplying
both
sides
of
1
by
1
x
,
we
get
1
x
d
y
d
x
-
1
x
y
=
1
x
x
+
1
x
e
-
x
⇒
1
x
d
y
d
x
-
1
x
2
y
=
x
+
1
x
2
e
-
x
Integrating
both
sides
with
respect
to
x
,
we
get
1
x
y
=
∫
1
x
+
1
x
2
e
-
x
d
x
+
C
.
.
.
.
.
2
Putting
1
x
e
-
x
=
t
⇒
-
1
x
e
-
x
-
1
x
2
e
-
x
d
x
=
d
t
⇒
1
x
+
1
x
2
e
-
x
d
x
=
-
d
t
Therefore
2
becomes
1
x
y
=
-
∫
d
t
+
C
⇒
1
x
y
=
-
t
+
C
⇒
1
x
y
=
-
1
x
e
-
x
+
C
⇒
y
=
-
e
-
x
+
C
x
Hence
,
y
=
-
e
-
x
+
C
x
is
the
required
solution
.
iv
We
have
,
x
d
y
d
x
+
y
=
x
4
⇒
d
y
d
x
+
1
x
y
=
x
3
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
1
x
Q
=
x
3
∴
I
.
F
.
=
e
∫
P
d
x
=
e
∫
1
x
d
x
=
e
log
x
=
x
Multiplying
both
sides
of
1
by
x
,
we
get
x
d
y
d
x
+
1
x
y
=
x
.
x
3
⇒
x
d
y
d
x
+
y
=
x
4
Integrating
both
sides
with
respect
to
x
,
we
get
x
y
=
∫
x
4
d
x
+
C
⇒
x
y
=
x
5
5
+
C
⇒
y
=
x
4
5
+
C
x
Hence
,
y
=
x
4
5
+
C
x
is
the
required
solution
.
v
We
have
,
x
log
x
d
y
d
x
+
y
=
log
x
Dividing
both
sides
by
x
log
x
,
we
get
d
y
d
x
+
y
x
log
x
=
log
x
x
log
x
⇒
d
y
d
x
+
y
x
log
x
=
1
x
⇒
d
y
d
x
+
1
x
log
x
y
=
1
x
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
1
x
log
x
Q
=
1
x
Now
,
I
.
F
.
=
e
∫
P
d
x
=
e
∫
1
x
log
x
d
x
=
e
log
log
x
=
log
x
So
,
the
solution
is
given
by
y
×
I
.
F
.
=
∫
Q
×
I
.
F
.
d
x
+
C
⇒
y
log
x
=
∫
1
x
×
log
x
d
x
+
C
⇒
y
log
x
=
log
x
2
2
+
C
⇒
y
=
1
2
log
x
+
C
log
x
vi
We
have
,
d
y
d
x
-
2
x
y
1
+
x
2
=
x
2
+
2
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
-
2
x
1
+
x
2
Q
=
x
2
+
2
∴
I
.
F
.
=
e
∫
P
d
x
=
e
-
∫
2
x
1
+
x
2
d
x
=
e
-
log
1
+
x
2
=
1
1
+
x
2
Multiplying
both
sides
of
1
by
1
1
+
x
2
,
we
get
1
1
+
x
2
d
y
d
x
-
2
x
y
1
+
x
2
=
1
1
+
x
2
x
2
+
2
⇒
1
1
+
x
2
d
y
d
x
-
2
x
y
1
+
x
2
2
=
x
2
+
2
x
2
+
1
Integrating
both
sides
with
respect
to
x
,
we
get
1
1
+
x
2
y
=
∫
x
2
+
2
x
2
+
1
d
x
+
C
⇒
1
1
+
x
2
y
=
∫
x
2
+
1
+
1
x
2
+
1
d
x
+
C
⇒
1
1
+
x
2
y
=
∫
d
x
+
∫
1
x
2
+
1
d
x
+
C
⇒
1
1
+
x
2
y
=
x
+
tan
-
1
x
+
C
⇒
y
=
1
+
x
2
x
+
tan
-
1
x
+
C
Hence
,
y
=
1
+
x
2
x
+
tan
-
1
x
+
C
is
the
required
solution
.
vii
We
have
,
d
y
d
x
+
y
cos
x
=
e
sin
x
cos
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
cos
x
Q
=
e
sin
x
cos
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
∫
cos
x
d
x
=
e
sin
x
Multiplying
both
sides
of
1
by
e
sin
x
,
we
get
e
sin
x
d
y
d
x
+
y
cos
x
=
e
sin
x
×
e
sin
x
cos
x
⇒
e
sin
x
d
y
d
x
+
y
e
sin
x
cos
x
=
e
2
sin
x
cos
x
Integrating
both
sides
with
respect
to
x
,
we
get
e
sin
x
y
=
∫
e
2
sin
x
cos
x
d
x
+
C
⇒
e
sin
x
y
=
I
+
C
.
.
.
.
.
2
Where
,
I
=
∫
e
2
sin
x
cos
x
d
x
Putting
t
=
sin
x
,
we
get
d
t
=
cos
x
d
x
∴
I
=
∫
e
2
t
d
t
=
e
2
t
2
=
e
2
sin
x
2
Putting
the
value
of
I
in
2
,
we
get
e
sin
x
y
=
e
2
sin
x
2
+
C
⇒
y
=
e
sin
x
2
+
C
e
-
sin
x
Hence
,
y
=
e
sin
x
2
+
C
e
-
sin
x
is
the
required
solution
.
viii
We
have
,
x
+
y
d
y
d
x
=
1
⇒
d
y
d
x
=
1
x
+
y
⇒
d
x
d
y
=
x
+
y
⇒
d
x
d
y
-
x
=
y
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
x
d
y
+
P
x
=
Q
where
P
=
-
1
Q
=
y
∴
I
.
F
.
=
e
∫
P
d
y
=
e
∫
-
1
d
y
=
e
-
y
Multiplying
both
sides
of
(
1
)
by
e
-
y
,
we
get
e
-
y
d
x
d
y
-
x
=
e
-
y
y
⇒
e
-
y
d
x
d
y
-
e
-
y
x
=
e
-
y
y
Integrating
both
sides
with
respect
to
y
,
we
get
e
-
y
x
=
∫
y
I
e
-
y
II
d
y
+
C
⇒
e
-
y
x
=
y
∫
e
-
y
d
y
-
∫
d
d
y
y
∫
e
-
y
d
y
d
y
+
C
⇒
e
-
y
x
=
-
y
e
-
y
-
e
-
y
+
C
⇒
e
-
y
x
+
y
e
-
y
+
e
-
y
=
C
⇒
x
+
y
+
1
e
-
y
=
C
⇒
x
+
y
+
1
=
C
e
y
Hence
,
x
+
y
+
1
=
C
e
y
is
the
required
solution
.
ix
We
have
,
d
y
d
x
cos
2
x
=
tan
x
-
y
⇒
d
y
d
x
+
1
cos
2
x
y
=
tan
x
sec
2
x
⇒
d
y
d
x
+
y
sec
2
x
=
tan
x
sec
2
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
sec
2
x
Q
=
tan
x
sec
2
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
∫
sec
2
x
d
x
=
e
tan
x
Multiplying
both
sides
of
1
by
e
tan
x
,
we
get
e
tan
x
d
y
d
x
+
y
sec
2
x
=
e
tan
x
tan
x
sec
2
x
⇒
e
tan
x
d
y
d
x
+
y
e
tan
x
sec
2
x
=
e
tan
x
tan
x
sec
2
x
Integrating
both
sides
with
respect
to
x
,
we
get
e
tan
x
y
=
∫
e
tan
x
tan
x
sec
2
x
d
x
+
C
⇒
e
tan
x
y
=
I
+
C
.
.
.
.
.
2
Where
,
I
=
∫
e
tan
x
tan
x
sec
2
x
d
x
Putting
t
=
tan
x
,
we
get
d
t
=
sec
2
x
d
x
∴
I
=
∫
t
I
e
t
II
d
t
=
t
∫
e
t
d
t
-
∫
d
d
t
t
∫
e
t
d
t
d
t
=
t
e
t
-
e
t
=
t
-
1
e
t
=
tan
x
-
1
e
tan
x
Putting
the
value
of
I
in
2
,
we
get
e
tan
x
y
=
tan
x
-
1
e
tan
x
+
C
⇒
y
=
tan
x
-
1
+
C
e
-
tan
x
Hence
,
y
=
tan
x
-
1
+
C
e
-
tan
x
is
the
required
solution
.
x
We
have
,
e
-
y
sec
2
y
d
y
=
d
x
+
x
d
y
⇒
d
x
=
e
-
y
sec
2
y
d
y
-
x
d
y
⇒
d
x
d
y
=
e
-
y
sec
2
y
-
x
⇒
d
x
d
y
+
x
=
e
-
y
sec
2
y
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
x
d
y
+
P
x
=
Q
where
P
=
1
Q
=
e
-
y
sec
2
y
∴
I
.
F
.
=
e
∫
P
d
y
=
e
∫
d
y
=
e
y
Multiplying
both
sides
of
1
by
e
y
,
we
get
e
y
d
x
d
y
+
x
=
e
y
e
-
y
sec
2
y
⇒
e
y
d
x
d
y
+
e
y
x
=
sec
2
y
Integrating
both
sides
with
respect
to
y
,
we
get
e
y
x
=
∫
sec
2
y
d
y
+
C
⇒
e
y
x
=
tan
y
+
C
⇒
x
=
tan
y
+
C
e
-
y
Hence
,
x
=
tan
y
+
C
e
-
y
is
the
required
solution
.
xi
We
have
,
x
log
x
d
y
d
x
+
y
=
2
log
x
Dividing
both
sides
by
x
log
x
,
we
get
d
y
d
x
+
y
x
log
x
=
2
log
x
x
log
x
⇒
d
y
d
x
+
y
x
log
x
=
2
x
⇒
d
y
d
x
+
1
x
log
x
y
=
2
x
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
1
x
log
x
Q
=
2
x
Now
,
I
.
F
.
=
e
∫
P
d
x
=
e
∫
1
x
log
x
d
x
=
e
log
log
x
=
log
x
So
,
the
solution
is
given
by
y
×
I
.
F
.
=
∫
Q
×
I
.
F
.
d
x
+
C
⇒
y
log
x
=
2
∫
1
x
×
log
x
d
x
+
C
Putting
log
x
=
t
⇒
1
x
d
x
=
d
t
∴
y
log
x
=
2
∫
t
d
t
+
C
⇒
y
log
x
=
2
t
2
2
+
C
⇒
y
log
x
=
t
2
+
C
⇒
y
log
x
=
log
x
2
+
C
∵
log
x
=
t
⇒
y
=
log
x
+
C
log
x
xii
We
have
,
x
d
y
d
x
+
2
y
=
x
2
log
x
Dividing
both
sides
by
x
,
we
get
d
y
d
x
+
2
y
x
=
x
log
x
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
2
x
Q
=
x
log
x
Now
,
I
.
F
.
=
e
∫
P
d
x
=
e
∫
2
x
d
x
=
e
2
log
x
=
x
2
So
,
the
solution
is
given
by
y
×
I
.
F
.
=
∫
Q
×
I
.
F
.
d
x
+
C
⇒
x
2
y
=
∫
x
3
II
log
x
I
d
x
+
C
⇒
x
2
y
=
log
x
∫
x
3
d
x
-
∫
d
d
x
log
x
∫
x
3
d
x
d
x
+
C
⇒
x
2
y
=
x
4
log
x
4
-
∫
x
3
4
d
x
+
C
⇒
x
2
y
=
x
4
log
x
4
-
x
4
16
+
C
⇒
y
=
x
2
log
x
4
-
x
2
16
+
C
x
2
⇒
y
=
x
2
16
4
log
x
-
1
+
C
x
2
Suggest Corrections
0
Similar questions
Q.
Solve the each of the following differential equations:
(i)
x
-
y
d
y
d
x
=
x
+
2
y
(ii)
x
cos
y
x
d
y
d
x
=
y
cos
y
x
+
x
(iii) y dx + x log
y
x
dy − 2x dy = 0
(iv)
d
y
d
x
-
y
=
cos
x
(v)
x
d
y
d
x
+
2
y
=
x
2
,
x
≠
0
(vi)
d
y
d
x
+
2
y
=
sin
x
(vii)
d
y
d
x
+
3
y
=
e
-
2
x
(viii)
d
y
d
x
+
y
x
=
x
2
(ix)
d
y
d
x
+
sec
x
y
=
tan
x
(x)
x
d
y
d
x
+
2
y
=
x
2
log
x
(xi)
x
log
x
d
y
d
x
+
y
=
2
x
log
x
(xii) (1 + x
2
) dy + 2xy dx = cot x dx
(xiii)
x
+
y
d
y
d
x
=
1
(xiv) y dx + (x − y
2
) dy = 0
(xv)
x
+
3
y
2
d
y
d
x
=
y
Q.
Solve each of the following initial value problems:
(i)
y
'
+
y
=
e
x
,
y
0
=
1
2
(ii)
x
d
y
d
x
-
y
=
log
x
,
y
1
=
0
(iii)
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
,
y
0
=
0
(iv)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
,
y
1
=
0
(v)
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
x
=
0
,
y
0
=
0
(vi)
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
,
y
0
=
1
(vii)
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
,
y
π
2
=
1
(viii)
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
,
y
π
2
=
0
(ix)
d
y
d
x
+
2
y
tan
x
=
sin
x
;
y
=
0
when
x
=
π
3
(x)
d
y
d
x
-
3
y
cot
x
=
sin
2
x
;
y
=
2
when
x
=
π
2
(xi)
d
y
d
x
+
y
cot
x
=
2
cos
x
,
y
π
2
=
0
(xii)
d
y
=
cos
x
2
-
y
cos
e
c
x
d
x
(xiii)
tan
x
d
y
d
x
=
2
x
tan
x
+
x
2
-
y
;
tan
x
≠
0
given that y = 0 when
x
=
π
2
.
Q.
Solve each of the following initial value problems:
(i)
y
'
+
y
=
e
x
,
y
0
=
1
2
(ii)
x
d
y
d
x
-
y
=
log
x
,
y
1
=
0
(iii)
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
,
y
0
=
0
(iv)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
,
y
1
=
0
(v)
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
x
=
0
,
y
0
=
0
(vi)
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
,
y
0
=
1
(vii)
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
,
y
π
2
=
1
(viii)
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
,
y
π
2
=
0
(ix)
d
y
d
x
+
2
y
tan
x
=
sin
x
;
y
=
0
when
x
=
π
3
(x)
d
y
d
x
-
3
y
cot
x
=
sin
2
x
;
y
=
2
when
x
=
π
2
(xi)
(xii)
Q.
Solve each of the following initial value problems:
(i)
y
'
+
y
=
e
x
,
y
0
=
1
2
(ii)
x
d
y
d
x
-
y
=
log
x
,
y
1
=
0
(iii)
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
,
y
0
=
0
(iv)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
,
y
1
=
0
(v)
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
x
=
0
,
y
0
=
0
(vi)
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
,
y
0
=
1
(vii)
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
,
y
π
2
=
1
(viii)
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
,
y
π
2
=
0
(ix)
d
y
d
x
+
2
y
tan
x
=
sin
x
;
y
=
0
when
x
=
π
3
(x)
d
y
d
x
-
3
y
cot
x
=
sin
2
x
;
y
=
2
when
x
=
π
2
Q.
y
-
x
d
y
d
x
=
b
1
+
x
2
d
y
d
x
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Hyperbola and Terminologies
MATHEMATICS
Watch in App
Explore more
Eccentricity of Hyperbola
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app