CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
215
You visited us 215 times! Enjoying our articles? Unlock Full Access!
Question

Find one-parameter families of solution curves of the following differential equations:
(or Solve the following differential equations)
(i) dydx+3y=emx, m is a given real number

(ii) dydx-y=cos 2x

(iii) xdydx-y=x+1e-x

(iv) xdydx+y=x4

(v) x log xdydx+y=log x

(vi) dydx-2xy1+x2=x2+2

(vii) dydx+y cos x=esin x cos x

(viii) x+ydydx=1

(ix) dydxcos2 x=tan x-y

(x) e-y sec2 y dy=dx+x dy

(xi) x log xdydx+y=2 log x

(xii) xdydx+2y=x2 log x

Open in App
Solution

i We have,dydx+3y=emx .....1Clearly, it is a linear differential equation of the form dydx+Py=QwhereP=3 Q=emx I.F.=eP dx =e3 dx = e3xMultiplying both sides of (1) by e3x, we get e3x dydx+3y=e3xemx e3xdydx+3 e3xy=em+3xIntegrating both sides with respect to x, we getye3x=em+3x dx+C when m+30 ye3x=em+3xm+3+Cy=emxm+3+Ce-3x ye3x=e0×x dx+C when m+3=0 ye3x=dx+Cye3x=x+Cy=x+Ce-3xHence, y=emxm+3+Ce-3x, where m+30 and y=x+Ce-3x, where m+3=0 are required solutions.


ii We have,dydx-y=cos 2x .....(1)Clearly, it is a linear differential equation of the form dydx+Py=QwhereP=-1Q=cos 2x I.F.=eP dx =e- dx = e-xMultiplying both sides of (1) by e-x, we gete-x dydx-y=e-xcos 2x e-xdydx-e-xy=e-xcos 2xIntegrating both sides with respect to x, we gety e-x=e-xcos 2x dx+C y e-x=I+C .....(2)Where,I=e-xcos 2x dx .....(3)I=12e-xsin 2x-12-e-xsin 2x dxI=12e-xsin 2x+12e-xsin 2x dxI=12e-xsin 2x-14e-xcos 2x-12×12-e-x×-cos 2x dxI=12e-xsin 2x-14e-xcos 2x-14e-xcos 2x dxI=12e-xsin 2x-14e-xcos 2x-14I From 354I=12e-xsin 2x-14e-xcos 2x5I=2e-xsin 2x-e-xcos 2xI=e-x52sin 2x-cos 2x .....(4)From (2) and (4) we getye-x=e-x52sin 2x-cos 2x+Cy=152sin 2x-cos 2x+CexHence, y=152sin 2x-cos 2x+Cex is the required solution.


iii We have, xdydx-y=x+1e-xdydx-1xy=x+1xe-x .....1Clearly, it is a linear differential equation of the form dydx+Py=QwhereP=-1xQ=x+1xe-x I.F.=eP dx =e-1x dx =e-log x =1xMultiplying both sides of 1 by 1x, we get1x dydx-1xy=1xx+1xe-x 1xdydx-1x2y=x+1x2e-xIntegrating both sides with respect to x, we get1xy=1x+1x2e-xdx+C .....2Putting 1xe-x=t-1xe-x-1x2e-xdx=dt1x+1x2e-xdx=-dtTherefore 2 becomes1xy=-dt+C1xy=-t+C1xy=-1xe-x+Cy=-e-x+CxHence, y=-e-x+Cx is the required solution.


iv We have, xdydx+y=x4dydx+1xy=x3 .....1Clearly, it is a linear differential equation of the form dydx+Py=QwhereP=1x Q=x3 I.F.=eP dx =e1x dx =elog x =xMultiplying both sides of 1 by x, we getx dydx+1xy=x.x3 xdydx+y=x4 Integrating both sides with respect to x, we getxy=x4 dx+Cxy=x55+Cy=x45+CxHence, y=x45+Cx is the required solution.


v We have,x log xdydx+y=log xDividing both sides by x log x, we getdydx+yx log x= log xx log xdydx+yx log x=1 xdydx+1x log xy=1 xComparing with dydx+Py=Q, we getP=1x log x Q=1 xNow,I.F.=ePdx=e1x log xdx =eloglog x =log xSo, the solution is given byy×I.F.=Q×I.F. dx+Cy log x=1 x×log x dx+Cy log x=log x22+Cy=12log x+Clog x


vi We have, dydx-2xy1+x2=x2+2 .....1Clearly, it is a linear differential equation of the form dydx+Py=QwhereP=-2x1+x2 Q=x2+2 I.F.=eP dx =e-2x1+x2 dx =e-log1+x2 =11+x2Multiplying both sides of 1 by 11+x2, we get11+x2 dydx-2xy1+x2=11+x2x2+211+x2dydx-2xy1+x22=x2+2x2+1Integrating both sides with respect to x, we get11+x2y=x2+2x2+1 dx+C11+x2y=x2+1+1x2+1 dx+C11+x2y=dx+1x2+1 dx+C11+x2y=x+tan-1x +Cy=1+x2x+tan-1x +CHence, y=1+x2x+tan-1x +C is the required solution.


vii We have,dydx+y cos x=esin x cos x .....1Clearly, it is a linear differential equation of the form dydx+Py=QwhereP=cos x Q=esin x cos x I.F.=eP dx =ecos x dx =esin xMultiplying both sides of 1 by esin x, we getesin x dydx+y cos x=esin x×esin x cos xesin xdydx+yesin xcos x=e2sin x cos xIntegrating both sides with respect to x, we getesin xy=e2sin x cos x dx+Cesin xy=I+C .....2Where,I=e2sin x cos x dxPutting t=sinx, we getdt=cos x dx I=e2t dt =e2t2 =e2sin x2Putting the value of I in 2, we getesin xy=e2sin x2+Cy=esin x2+Ce-sin xHence, y=esin x2+Ce-sin x is the required solution.


viii We have,x+ydydx=1dydx=1x+ydxdy=x+ydxdy-x=y .....1Clearly, it is a linear differential equation of the form dxdy+Px=QwhereP=-1Q=y I.F.=eP dy =e-1 dy =e-yMultiplying both sides of (1) by e-y, we gete-y dxdy-x=e-yye-ydxdy-e-yx=e-yyIntegrating both sides with respect to y, we gete-yx=y Ie-yII dy+Ce-yx=ye-y dy-ddyye-y dydy+Ce-yx=-ye-y -e-y +Ce-yx+ye-y +e-y =Cx+y+1e-y =Cx+y+1=CeyHence, x+y+1=Cey is the required solution.


ix We have,dydxcos2x=tan x-ydydx+1cos2 xy=tan x sec2 xdydx+y sec2 x=tan x sec2 x .....1Clearly, it is a linear differential equation of the form dydx+Py=QwhereP=sec2 xQ=tan x sec2 x I.F.=eP dx =esec2 x dx =etan xMultiplying both sides of 1 by etan x, we getetan x dydx+y sec2 x=etan xtan x sec2 xetan xdydx+yetan xsec2 x=etan xtan x sec2 xIntegrating both sides with respect to x, we getetan xy=etan xtan x sec2 x dx+Cetan xy=I+C .....2Where,I=etan xtan x sec2 x dxPutting t= tan x, we getdt=sec2 x dx I=tI etII dt =tet dt-ddttet dtdt =t et-et =t-1et =tan x-1etan xPutting the value of I in 2, we getetan xy=tan x-1etan x+Cy=tan x-1+Ce-tan xHence, y=tan x-1+Ce-tan x is the required solution.


x We have,e-ysec2y dy=dx+x dy dx=e-ysec2y dy-x dy dxdy=e-ysec2y-x dxdy+x=e-ysec2y .....1Clearly, it is a linear differential equation of the form dxdy+Px=QwhereP=1Q=e-ysec2y I.F.=eP dy =edy =eyMultiplying both sides of 1 by ey, we geteydxdy+x=eye-ysec2yeydxdy+eyx=sec2yIntegrating both sides with respect to y, we geteyx=sec2y dy+Ceyx=tan y+Cx=tan y+Ce-yHence, x=tan y+Ce-y is the required solution.


xi We have,x log xdydx+y=2log xDividing both sides by x log x, we getdydx+yx log x=2 log xx log xdydx+yx log x=2 xdydx+1x log xy=2 xComparing with dydx+Py=Q, we getP=1x log xQ=2 xNow, I.F.=ePdx=e1x log xdx =eloglog x =log xSo, the solution is given by y×I.F.=Q×I.F. dx+Cy log x=21 x×log x dx+CPutting log x=t1xdx=dty log x=2t dt+Cy log x=2t22+Cy log x=t2+Cy log x=log x2+C log x=ty=log x+Clog x


xii We have,xdydx+2y=x2log xDividing both sides by x, we getdydx+2yx=x log xComparing with dydx+Py=Q, we getP=2xQ=x log xNow, I.F.=ePdx=e2xdx =e2logx =x2So, the solution is given byy×I.F.=Q×I.F. dx+Cx2y=x3IIlog xI dx+Cx2y=log xx3 dx-ddxlog xx3 dxdx+Cx2y=x4log x4-x34dx+Cx2y=x4log x4-x416+Cy=x2log x4-x216+Cx2y=x2164log x-1+Cx2

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Hyperbola and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon