Find p(0),p(1) and p(2) for each of the following polynomials:
(i) p(y)=y2−y+1
(ii) p(t)=2+t+2t2−t3
(iii) p(x)=x3
(iv) p(x)=(x−1)(x+1)
(i) p(y)=y2−y+1
p(0)=02−0+1=1
p(1)=12−1+1=1
p(2)=22−2+1=3.
(ii) p(t)=2+t+2t2−t3
p(0)=2+0+2×02−03=2
p(1)=2+1+2×12−13=4
p(2)=2+2+2×22−23=4+8−8=4.
(iii) p(x)=x3
p(0)=0
p(1)=13=1
p(2)=23=8.
(iv) p(x)=(x−1)(x+1)
p(0)=(0−1)(0+1)=−1
p(1)=(1−1)(1+1)=0
p(2)=(2−1)(2+1)=3