Given, px2−8xy+3y2+14x+2y+q=5...(i) represents pair of
perpendicular lines.
equation (i) is of the form
ax2+2hxy+by2+2gx+2fy+c=0
⇒a=p,h=4,b=3,g=7,f=1,c=q−5.
since the equation (i) represents pair of perpendicular lines
a+b=0
⇒p+3=0
⇒p=−3....(ii)
also eqn (i) represents a pair of straight lines
∣∣
∣∣ahghbfgfc∣∣
∣∣=0
⇒∣∣
∣∣p−47−43171q−5∣∣
∣∣=0
⇒p(3q−15−1)+4(−4q+20−7)+7(−4−21)=0
⇒(−3)(3q−16)+4(−4q+13)−175=0 [from (ii)P=-3]
⇒−9q+48−16q+52−175=0
⇒−25q−75=0
⇒−25q=75
∴q=−3
Hence p=−3,q=−3.