Given equation is
2x2+4xy−py2+4x+qy+1=0
comparing it with
ax2+2hxy+hy2+2gx+2fy+c=0, we get
a=2,h=2,b=−p,g=2,f=q2,c=1
Since, The given equation represents a
pair of line perpendicular to each other.
now, a+b=0
2+(−p)=0
p=2
Also, The equation represents a pair of lines
∴∣∣
∣∣ahghbfgfc∣∣
∣∣=0
∴∣∣
∣
∣
∣∣2222−2q22q21∣∣
∣
∣
∣∣=0
∴2(−2×1−q2×q2)−2(2×1−2×q2)+2(2×q2−(−2)×2)=0
∴2(−2−q24)−2(2−q)+2(q+4)=0
∴2[−2−q24−2+q+q+4]=0
∴[−4−q24+2q+4]=0
∴[2q−q24]=0
∴2q=q24
∴q2=8q
∴q2−8q=0
∴q2−8q=0
∴q(q−8)=0
∴q=0,q=8