wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find particular solution of the differential equation sin 2x dydx - y = tan x given that x = π4 when y = 0.

Open in App
Solution

By rearranging the given differential eqn we get linear differential eqn in y
i.e. dydxcsc2x.y=tanxsin2x[dydx+P(x)y=Q(x)]
dydxcsc2x.y=sinx2sinxcosx.cosx
dydxcsc2x.y=12sec2x....(1)
I.E =ecsc2x dx=eln(csc2xcot2x)2
=1csc2xcot2x
Sol is (form eqn (1))
y(1csc2xcot2x)=12sec2x11sin2xcos2xsin2xdx+c
=12sec212sin2x2sinxcosxdx+C
=12sec2xtanxdx+C
=122tanx+C(f(x)f(x)=2f(x))
y.(1csc2xcot2x)=tanx+C
y.1tanx=tanx+C
y=tanx+Ctanx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon