wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find particular solution:
(xy)dydx=(x+2y), given y=0 when x=1

Open in App
Solution

Given,

(xy)dydx=(x+2y)

dydx=x+2yxy

substitute y=vxdydx=v+xdvdx

v+xdvdx=x+2vxxvx

v+xdvdx=1+2v1v

xdvdx=1+2v1vv

xdvdx=v2+v+11v

1vv2+v+1dv=dxx

integrating on both sides, we get,

1vv2+v+1dv=dxx

22vv2+v+1dv=2logx+c

22vv2+v+1dv=logx2+c

23tan1(2v+13)=log|x2(v2+v+1)|+c

23tan1(2y+x3x)=logx2y2+yx+x2x2+c

substitute y=0,x=1

23tan1(2(0)+13(1))=log1202+(1)(0)+(1)212+c

23tan1(13)=log1+c

c=23π6=π3

23tan1(2y+x3x)=logx2y2+yx+x2x2+π3

6tan1(2y+x3x)=3logx2y2+yx+x2x2+π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
A Pair of Straight Lines
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon