Let us consider the problem
x−cosθcosϕ−cosθ=y−sinθsinϕ−sinθ
implies that, (x−cosθ)(sinϕ−sinθ)=(y−sinθ)(cosϕ−cosθ)
implies that, x(sinϕ−sinθ)−y(cosϕ−cosθ)−cosθsinϕ+cosθsinθ+sinθcosϕ−sinθcosθ=0
But cosϕsinθ−cosθsinϕ=sin(ϕ−θ)
Therefore, x(sinϕ−sinθ)−y(cosϕ−cosθ)+sin(ϕ−θ)=0
On comparing with the equations Ax+By+C=0
A=sinθ−sinϕ,B=cosϕ−cosθandC=sin(ϕ−θ)
So, perpendicular distance d of the line Ax+By+C=0 from a point (x1,y1) is d=|Ax1+By1+C|√A2+B2
Substitutes the values we get,
d=|(sinθ−sinϕ)(0)+(cosϕ−cosθ)(0)+sin(ϕ−θ)|√(sinθ−sinϕ)2+(cosϕ−cosθ)2
=|sinθ−ϕ|√sin2θ+sin2ϕ−2sinθsinϕ+cos2θ+cos2ϕ−2cosθcosϕ
=|sin(θ−ϕ)|√(sin2θ+cos2θ)+(sin2ϕ+cos2ϕ)−2(sinθsinϕ+cosθcosϕ)
=|sin(ϕ−θ)|√1+1−2cos(ϕ−θ)
=|sin(ϕ−θ)|√2(1−cos(ϕ−θ)
The hint given is, 1−cosθ=2sin2θ2
Hence the required result is, =|sin(ϕ−θ)||2sin(ϕ−θ2)|