wiz-icon
MyQuestionIcon
MyQuestionIcon
12
You visited us 12 times! Enjoying our articles? Unlock Full Access!
Question

Find perpendicular distance from the origin of the line joining the points (cosθ,sinθ) and (cosϕ,sinϕ).

Open in App
Solution

Let us consider the problem
xcosθcosϕcosθ=ysinθsinϕsinθ
implies that, (xcosθ)(sinϕsinθ)=(ysinθ)(cosϕcosθ)
implies that, x(sinϕsinθ)y(cosϕcosθ)cosθsinϕ+cosθsinθ+sinθcosϕsinθcosθ=0
But cosϕsinθcosθsinϕ=sin(ϕθ)
Therefore, x(sinϕsinθ)y(cosϕcosθ)+sin(ϕθ)=0
On comparing with the equations Ax+By+C=0
A=sinθsinϕ,B=cosϕcosθandC=sin(ϕθ)
So, perpendicular distance d of the line Ax+By+C=0 from a point (x1,y1) is d=|Ax1+By1+C|A2+B2
Substitutes the values we get,
d=|(sinθsinϕ)(0)+(cosϕcosθ)(0)+sin(ϕθ)|(sinθsinϕ)2+(cosϕcosθ)2
=|sinθϕ|sin2θ+sin2ϕ2sinθsinϕ+cos2θ+cos2ϕ2cosθcosϕ
=|sin(θϕ)|(sin2θ+cos2θ)+(sin2ϕ+cos2ϕ)2(sinθsinϕ+cosθcosϕ)
=|sin(ϕθ)|1+12cos(ϕθ)
=|sin(ϕθ)|2(1cos(ϕθ)
The hint given is, 1cosθ=2sin2θ2
Hence the required result is, =|sin(ϕθ)||2sin(ϕθ2)|

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and a Point
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon