The equation of the line joining the points (cosθ,sinθ) and (cosϕ,sinϕ) is given by,
y−sinθ=sinϕ−sinθcosϕ−cosθ(x−cosθ)
x(sinϕ−sinθ)+y(cosϕ−cosθ)+cosθsinϕ−cosθsinθ−sinθcosϕ+sinθcosθ=0
x(sinθ−sinϕ )+y(cosϕ−cosθ)+sin(ϕ−θ)=0
Therefore, the perpendicular distance (d) of the given line from point (0,0) is
d=|(0)(sinθ−sinϕ)+(0)(cosϕ−cosθ)+sin(ϕ−θ)|√(sinθ−sinϕ)2+(cosϕ−cosθ)2
=|sin(ϕ−θ)|√sin2θ+sin2ϕ−2sinθsinϕ+cos2ϕ+cos2θ−2cosϕcosθ
=|sin(ϕ−θ)|√(sin2θ+cos2θ)+(sin2ϕ+cos2ϕ)−2(sinθsinϕ+cosθcosϕ)
=|sin(ϕ−θ)|√2(1−cos(ϕ−θ))
=|sin(ϕ−θ)|√2{2sin2{ϕ−θ2}}
=|sin(ϕ−θ)|∣∣2sin{ϕ−θ2}∣∣