wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find range of

f(x)=3cosx+4sinx+10

Open in App
Solution

Let y = 3 cosx + 4 sinx +10
⇒ (y-10) = 3 cosx + 4 sinx
Recall that for all real values of x,
−√(a^2+b^2) ≤ ( a sin x + b cos x ) ≤ √(a^2+b^2) → (1)
⇒ −√(3^2 + 4^2) ≤ (y-10) ≤ +√(352 + 4^2) [From (1)]
⇒ −5 ≤ ( y -10 ) ≤ 5
⇒ −5 +10 ≤ [( y -10 ) +10] ≤ 5 +10
⇒ 5 ≤ y ≤15
⇒ 5≤ (4 sin x + 3 cos x +10) ≤ 15
Hence the range is [5, 15].

flag
Suggest Corrections
thumbs-up
11
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems for Differentiability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon