The correct options are
B x=1,y=−4
D x=−1,y=4
Given,−3+ix2y=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x2+y+4i
−3+ix2y=x2+y−4i
−3=x2+y
and x2y=−4
∴−3=x2−4x2 [Putting y=−4/x2 from (2) in (1)]
x4+3x2−4=0
(x2+4)(x2−1)=0
x2−1=0
x=±1
From (2), y=−4, when x=±1.
Hence, x=1,y=−4 or x=−1,y=4.