Find real values of x,y,z satisfying the equations x+y=2,xy−z2=1.
Open in App
Solution
We have x+y=2,xy=1+z2 Eliminating y, we get x(2−x)=1+z2 ∴x2−2x+(1+z2)=0. For real x △=4−4(1+z2)≥0 or −4z2≥0 ∴z=0 Hence x+y=2,xy=1 ∴x,y are roots of t2−2t+1=0 ∴x=1,y=1,z=0