The correct option is
D 1√6Given eq of lines
→r=^i+2^j+3^k+λ(2^i+3^j+4^k)----(1)
→r=2^i+4^j+5^k+μ(3^i+4^j+5^k)----(2)
position vector and normal vector of line (1)
→a=^i+2^j+3^k
→n1=2^i+3^j+4^k
position vector and normal vector of line (2)
→c=2^i+4^j+5^k
→n2=3^i+4^j+5^k
shortest between two skews line
SD=→AC⋅(→n1×→n2)|→n1×→n2|
AC=→c−→a
AC=2^i+4^j+5^k−(^i+2^j+3^k)
AC=2^i+4^j+5^k−^i−2^j−3^k
AC=^i+2^j+2^k
→n1×→n2=∣∣
∣
∣∣^i^j^k234345∣∣
∣
∣∣
→n1×→n2=^i(15−16)−^j(10−12)+^k(8−9)
→n1×→n2=−^i+2^j−^k
|→n1×→n2|=√(−1)2+22+(−1)2
|→n1×→n2|=√6
putting AC →n1×→n2,|→n1×→n2| in formula
SD=→AC⋅(→n1×→n2)|→n1×→n2|
SD=(^i+2^j+2^k)⋅(−^i+2^j−^k)√6
SD=−1+4−2√6
SD=1√6