Step 1: Check sign for sinx2,cosx2 and tanx2
Given that x is in quadrant II.
⇒90∘<x<180∘
⇒90∘2<x2<180∘2
⇒45∘<x2<90∘.
⇒x2 lies in 1st quadrant.
∴sinx2,cosx2 and tanx2 are positive.
Step 2:
Solve for the value of cosx2
sin2x+cos2x=1
⇒(14)2+cos2x=1
⇒cos2x=1−116
⇒cos2x=1516
⇒cos x=±√154
Given x is in quadrant II.
So cosx is negative.
∴cosx=−√154
cosx=2cos2x2−1
⇒−√154=2cos2(x2)−1
⇒2cos2(x2)=1−√154
⇒cos2(x2)=4−√158⇒cosx2=±√4−√158
⇒cosx2=±√2(4−√15)16=±√8−2√154=√8−2√154
Step 3:
Solve for the value of sinx2
sin2x+cos2x=1 Replacing x by x2
sin2x2+cos2x2=1
⇒sin2x2+8−2√1516=1
⇒sin2x2=1−8−2√1516
⇒sinx2=√8+2√154
Step 4:
tanx2=sinx2cosx2
⇒tanx2=√8+2√154√8−2√154=√8+2√154×4√8−2√15
⇒tanx2=√8+2√158−2√15
⇒tanx2=√8+2√158−2√15×8+2√158+2√15
⇒tanx2=√(8+2√15)264−4×15=8+2√152
⇒tanx2=4+√15