wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Find sinx2,cosx2 and tanx2 for sinx=14,x in quadrant II.

Open in App
Solution

Step 1: Check sign for sinx2,cosx2 and tanx2
Given that x is in quadrant II.
90<x<180
902<x2<1802
45<x2<90.
x2 lies in 1st quadrant.
sinx2,cosx2 and tanx2 are positive.

Step 2:
Solve for the value of cosx2
sin2x+cos2x=1
(14)2+cos2x=1
cos2x=1116
cos2x=1516
cos x=±154
Given x is in quadrant II.
So cosx is negative.
cosx=154
cosx=2cos2x21
154=2cos2(x2)1
2cos2(x2)=1154
cos2(x2)=4158cosx2=±4158
cosx2=±2(415)16=±82154=82154

Step 3:
Solve for the value of sinx2
sin2x+cos2x=1 Replacing x by x2
sin2x2+cos2x2=1
sin2x2+821516=1
sin2x2=1821516
sinx2=8+2154

Step 4:
tanx2=sinx2cosx2
tanx2=8+215482154=8+2154×48215
tanx2=8+2158215
tanx2=8+2158215×8+2158+215
tanx2=(8+215)2644×15=8+2152
tanx2=4+15

flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon