Step 1: Check sign for sinx2,cosx2 and tanx2
Given that x is in quadrant II.
⇒90∘<x<180∘
⇒90∘2<x2<180∘2
⇒45∘<x2<90∘
⇒x2 lies in 1st quadrant.
∴sinx2,cosx2 and tanx2 are positive.
Step 2:
tanx=2tanx21−tan2x2
⇒−43=2tanx21−tan2x2
⇒−4+4tan2x2=6tanx2
⇒2tan2x2−3tanx2−2=0
⇒2tanx2(tanx2−2)+1(tanx2−2)=0
⇒(2tanx2+1)(tanx2−2)=0
⇒(2tanx2+1)=0,(tanx2−2)=0
⇒tanx2=−12,tanx2=2
But tanx2 is positive.
⇒tanx2=2
Step 3:
1+tan2x=sec2x, Replacing x by x2
1+tan2x2=sec2x2
⇒1+(2)2=sec2x2
⇒sec2x2=5⇒secx2=±√5
But x2 lies in 1stquadrant, secx2 is positive.
⇒secx2=√5
∴cosx2=1√5
Step 4:
sin2x+cos2x=1 Replacing x by x2
sin2x2+cos2x2=1
⇒sin2x2+15=1⇒sin2x2=45
⇒sinx2=±2√5
But sinx2 is positive.
∴sinx2=2√5
tanx2=,cosx2=1√5 and sinx2=2√5