wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find sinx2,cosx2 and tanx2 for tanx=43,x in quadrant II.

Open in App
Solution

Step 1: Check sign for sinx2,cosx2 and tanx2
Given that x is in quadrant II.
90<x<180
902<x2<1802
45<x2<90
x2 lies in 1st quadrant.
sinx2,cosx2 and tanx2 are positive.

Step 2:
tanx=2tanx21tan2x2
43=2tanx21tan2x2
4+4tan2x2=6tanx2
2tan2x23tanx22=0
2tanx2(tanx22)+1(tanx22)=0
(2tanx2+1)(tanx22)=0
(2tanx2+1)=0,(tanx22)=0
tanx2=12,tanx2=2
But tanx2 is positive.
tanx2=2

Step 3:
1+tan2x=sec2x, Replacing x by x2
1+tan2x2=sec2x2
1+(2)2=sec2x2
sec2x2=5secx2=±5
But x2 lies in 1stquadrant, secx2 is positive.
secx2=5
cosx2=15

Step 4:
sin2x+cos2x=1 Replacing x by x2
sin2x2+cos2x2=1
sin2x2+15=1sin2x2=45
sinx2=±25
But sinx2 is positive.
sinx2=25
tanx2=,cosx2=15 and sinx2=25

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon