Step 1: Check sign for sinx2,cosx2 and tanx2
Given that x is in quadrant III.
⇒180∘<x<270∘
⇒180∘2<x2<270∘2
⇒90∘<x2<135∘
⇒x2 lies in 2nd quadrant.
∴sin is positive, cos and tan are negative.
Step 2:
cosx=2cos2x2−1
⇒−13=2cos2(x2)−1
⇒2cos2(x2)=1−13
⇒2cos2(x2)=23
⇒cos(x2)=±1√3
But cosx2 is negative
∴cosx2=−1√3
Step 3:
Solve for the value of sinx2
sin2x+cos2x=1 Replacing x by x2
sin2x2+cos2x2=1
⇒sin2x2+13=1⇒sin2x2=23
⇒sinx2=±√23×√3√3⇒sinx2=±√63
But sinx2 is positive
∴sinx2=√63
Step 4:
tanx=sinxcosx Replacing x by x2
tanx2=sinx2cosx2
⇒tanx2=√63−1√3=√63×−√31=√3×√23×−√31
⇒tanx2=−√2
∴sinx2=√63,cosx2=−√33 and tanx2=−√2