Part 1st
given,
tanx=−43 ,x in 2nd quadrant
We have to find tanx2=?,cosx2=?,sinx2=?
Consider ,
tanx=−43
tan(2.x2)=−43
2tanx21−tan2x2=−43
3×2tanx2=−4(1−tan2x2)
6tanx2=−4(1−tan2x2)=−4+4tan2x2
4tan2x2−6tanx2−4=0
2tan2x2−3tanx2−2=0
By solving this equation, we get
tanx2=−12,tanx2=2
We take tanx2=−12 because in 2nd quadrant tanx is negative
Hence ,
tanx2=−12
tan2x2=(−12)2=14
tan2x2+1=14+1
tan2x2+1=54
sec2x2=54
secx2=±√52
cosx2=±√52
Because in 2nd quadrant cosx is negative
cosx2=−√52
Now ,
cos2x2=(−√52)2=54
1−cos2x2=1−54=−14
sinx2=±√−12
Because in 2nd quadrant cosx is negative
sinx2=√−12
Part 2nd .
Given,
cosx=−13 and x is in III quarant.
Now,
∵cosA=2cos2A2−1
∴cos2A2=√cosA+12
∴cos2x2=√cosx+12= ⎷−13+12=±√13
But cosx is negative in III quadrant
cosx2=−√13
∵sinA2=√1−cosA2= ⎷1−(−13)2
But in II quadrant sinx is negative
Sinx2=±√23
=−√23
Tanx2=sinx2cosx2=√2