Find sin x2, cos x2 and tan x2 in each of the following:
sin x = 14, x in quadrant II.
Here sin x = 14, x in quadrant II.
∴cos2 x = 1 - sin2 x
⇒cos2x=1−(14)2=1−116=1516
∴ cos x = ±√154
But x lies in second quadrant.
∴ cos x =- √154
Also π2<x<π⇒π4<x2<π2
So x2 lies in first quadrant.
∴ sin x2, cos x2 and tan x2 are all positive.
Now cos π2=√1+cos x2=√4−√1542
= 4−√158=√8−2√154
sin x2=√1-cos x2=√1+√1542
= √4+√158 = √8+2√154tanx2=sinx2cosx2=√8+2√154√8−2√154
= √8+2√15√8−2√15=√4+√15√4−√15
= 4+√15√16−15=4+√15.