Find sin x2, cos x2 and tan x2 in each of the following:
tan x = - 43, x in quadrant II.
Here tan x = −43, x in quardrant II
∴sec2 x = 1 + tan2 x
⇒sec2 x =1 + (−43)2=1+169=259
∴ sec x = ±53⇒ cos x = ±35
But x lies in the second quadrant.
∴ cos x = −35
Also π2<x<π⇒π4<x2<π2
So x2, cos x2 and tan x2 are all positive.
Now, cos x2=√1+cos x2=√1−352
= √15×√5√5=√55
sin x2=√1−cos x2=√1+352
= √45=2√5×√5√5=2√55
tan x2=sinx2cosx2=2√51√5 = 2.