2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration Using Substitution
Find solution...
Question
Find solution in terms of indefinite integration, using substitution
∫
1
0
x
cos
(
tan
−
1
x
)
d
x
Open in App
Solution
∫
1
0
x
cos
(
tan
−
1
x
)
d
x
Let,
tan
−
1
x
=
t
at,
x
=
0
,
t
=
0
;
x
=
1
,
t
=
π
4
d
t
=
1
1
+
x
2
d
x
∴
∫
1
0
x
cos
(
tan
−
1
x
)
d
x
=
∫
π
4
0
tan
t
×
cos
t
×
(
1
+
tan
2
t
)
d
t
=
∫
π
4
0
tan
t
×
cos
t
×
(
sec
2
t
)
d
t
......{
∵
1
+
tan
2
t
=
sec
2
t
}
=
∫
π
4
0
sin
t
cos
2
t
d
t
......{
∵
1
cos
t
=
sec
t
a
n
d
tan
t
=
sin
t
cos
t
}
=
[
(
cos
t
)
(
−
2
+
1
)
−
2
+
1
]
π
4
0
=
[
(
cos
t
)
−
1
−
1
]
π
4
0
=
[
(
−
sec
π
4
)
−
(
−
sec
0
)
]
=
−
√
2
+
1
Suggest Corrections
0
Similar questions
Q.
∫
(
x
+
5
)
2
d
x
. Integrate this using fundamental properties of indefinite integral.
Q.
Use integration by parts to evaluate
∫
2
1
cos
h
−
1
x
d
x
Q.
The solution of differential equation
(
1
+
e
2
y
)
e
tan
−
1
x
d
x
−
(
1
+
x
2
)
(
e
y
+
(
e
y
−
1
)
2
)
d
y
=
0
is
(
Here,
C
is a constant of integration
)
Q.
Evaluate the integrals using substitution.
∫
1
0
x
x
2
+
1
d
x
.
Q.
Evaluate the integral
∫
1
0
x
x
2
+
1
d
x
using substitution.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
MATHEMATICS
Watch in App
Explore more
Integration Using Substitution
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app