We have,
extanydx+(1−ex)sec2ydy=0
Now,
⇒extanydx=−(1−ex)sec2ydy
⇒extanydx=(ex−1)sec2ydy
⇒ex(ex−1)dx=sec2ytanydy
On integration and we get,
∫ex(ex−1)dx=∫sec2ytanydy
⇒log(ex−1)=logtany+logC