Let log2x=A,log3x=B,log5x=C
⇒ABC=AB+BC+CA
=ABC(1A+1B+1C)
⇒ABC(1A+1B+1C−1)=0
⇒A=0,B=0,C=0
⇒log2x=0,log3x=0,log5x=0
⇒x=(20,30,50)
∴x=1
Again 1A+1B+1C−1=0
Using base change theorem, we have
⇒logx2+logx3+logx5−1=0
⇒logx2+logx3+logx5=1
By using the product rule of logarithms, we have
logx30=1
∴x=30
Hence x=1,30
∴ Roots are 1 and 30
Hence, the required value =(1+30)2=312=961.