2log2log2x+log1/2log2(2√2x)=1
2log2log2x−log2log2(2√2x)=1
log2(log2x)2−log2log2(2√2x)=1
⇒log2⎛⎜
⎜⎝(log2x)2log2(2√2x)⎞⎟
⎟⎠=1
⇒2=(log2x)2log2(2√2x)
⇒(log2x)2=2log2(2√2)+2log2x
Put log2x=t
⇒t2−2t−log28=0
⇒t2−2t−3=0
⇒(t−3)(t+1)=0
⇒t=3,−1
⇒log2x=3,log2x=−1
⇒x=23,x=2−1
From the given eqn it follows that x>0
So, both values are possible