Given:
3+5×14+7×142+⋯
Let S=3+5×14+7×142+⋯. …… (1)
Multiply both sides by 14.
14S=34+5×142+7×143+⋯ …… (2)
Subtract equation (2) from equation (1).
S−14S=3+(54−34)+(7×142−5×142)+(9×143−7×143)+⋯
34S=3+24+242+243+⋯
34S=3+12(1+14+142+⋯+(n–1)terms)
34S=3+12⎛⎜ ⎜ ⎜ ⎜ ⎜⎝1⎛⎜ ⎜ ⎜ ⎜ ⎜⎝(14)n−1−114−1⎞⎟ ⎟ ⎟ ⎟ ⎟⎠⎞⎟ ⎟ ⎟ ⎟ ⎟⎠
34S=3+12⎛⎜
⎜
⎜
⎜
⎜⎝1⎛⎜
⎜
⎜
⎜
⎜⎝(14)n−1−1−34⎞⎟
⎟
⎟
⎟
⎟⎠⎞⎟
⎟
⎟
⎟
⎟⎠
S=4−89((14)n−1−1)
Thus, the sum of n terms of the series is S=4−89((14)n−1−1).