6
You visited us
6
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration to Solve Modified Sum of Binomial Coefficients
Find Sum upto...
Question
Find Sum upto n terms for the following series :
i)
1
+
2
x
+
3
x
2
+
4
x
3
+
.
.
.
.
,
|
x
|
<
1
ii)
1
+
4
x
+
7
x
2
+
10
x
3
+
.
.
.
.
,
|
x
|
<
1
iii)
2
×
1
+
3
×
2
+
4
×
4
+
5
×
8
+
.
.
.
.
Open in App
Solution
i)
1
+
2
x
+
3
x
2
+
4
x
3
+
.
.
.
.
.
.
.
Let
S
=
1
+
2
x
+
3
x
2
+
4
x
3
+
.
.
.
.
.
.
.
x
⋅
S
=
x
+
2
x
2
+
3
x
3
+
4
x
4
+
.
.
.
.
.
.
S
−
x
⋅
S
=
1
+
x
+
x
2
+
x
3
+
.
.
.
.
.
.
.
S
(
1
−
x
)
=
1
+
x
+
x
2
+
x
3
+
.
.
.
.
.
.
.
S
(
1
−
x
)
=
1
1
−
x
∴
S
=
1
(
1
−
x
)
2
ii)
1
+
4
x
+
7
x
2
+
10
x
3
+
.
.
.
.
.
.
.
Let
S
=
1
+
4
x
+
7
x
2
+
10
x
3
+
.
.
.
.
.
.
.
x
⋅
S
=
x
+
4
x
2
+
7
x
3
+
10
x
4
+
.
.
.
.
.
.
S
−
x
⋅
S
=
1
+
3
x
+
3
x
2
+
3
x
3
+
.
.
.
.
.
.
.
S
−
x
⋅
S
=
1
+
3
(
x
+
x
2
+
x
3
+
.
.
.
.
.
.
.
)
(
1
−
x
)
S
=
1
+
3
(
x
1
−
x
)
S
=
1
1
−
x
+
3
x
(
1
−
x
)
2
∴
S
=
1
+
2
x
(
1
−
x
)
2
iii)
2
×
1
+
3
×
2
+
4
×
4
+
5
×
8
+
.
.
.
.
.
.
.
.
.
2
,
3
,
4
→
A
.
P
⇒
T
n
=
a
+
(
n
−
1
)
d
=
2
+
(
n
−
1
)
1
=
n
+
1
1
,
2
,
4
→
G
.
P
.
⇒
T
n
=
a
r
n
−
1
=
1
⋅
2
n
−
1
=
2
n
−
1
∴
T
n
=
(
n
+
1
)
2
n
−
1
S
=
2
⋅
1
+
3
⋅
2
+
4
⋅
4
+
.
.
.
.
.
.
.
.
.
.
.
.
.
+
T
n
⇒
2
S
=
2
⋅
+
3
⋅
4
+
4
⋅
8
+
.
.
.
.
.
.
.
.
.
+
T
n
−
1
+
T
n
S
−
2
S
=
2
+
2
+
4
+
8
+
.
.
.
.
.
.
.
+
T
n
−
T
n
−
1
−
T
n
Again
2
+
4
+
8
+
.
.
.
.
.
.
.
+
T
n
−
T
n
−
1
S
=
a
r
n
−
1
−
1
r
−
1
=
2
2
n
−
1
−
1
2
−
1
=
2
⋅
2
n
−
1
−
2
S
=
2
n
−
2
∴
−
S
=
2
+
2
n
−
2
−
T
n
⇒
S
=
T
n
−
2
n
substituting value of
T
n
, we get
S
=
(
n
+
1
)
2
n
−
1
−
2
n
⇒
S
=
2
n
−
1
(
n
−
1
)
Suggest Corrections
0
Similar questions
Q.
Sum to
i
n
f
i
n
i
t
e
terms the following series:
1
+
4
x
+
7
x
2
+
10
x
3
+
.
.
.
,
|
x
|
<
1
.
Q.
Sum to
n
terms the following series:
1
+
2
x
+
3
x
2
+
4
x
3
+
.
.
.
,
|
x
|
<
1
Q.
The sum of the series
1
+
2
x
+
3
x
2
+
4
x
3
+
.
.
.
.
.
upto n terms is
Q.
The sum of the series 1 + 2x + 3
x
2
+ 4
x
3
+ ..........upto n
terms is