Find tan 15∘ and show that tan 15∘ + cot 15∘ = 4
We have, tan15∘=tan(60−45∘)
= tan60∘−tan45∘1+tan60tan45∘[∵tan(A−B)=tanA−tanB1+tanAtanB]
=√3−11+√3=√3+1√3−1 cot15∘=1tan15∘=√3+1√3−1
and tan15∘+cot15∘=√3−1√3+1+√3+1√3−1
=(√3−1)2+(√3+1)2(√3+1)(√3−1)
=2[(√3)2+12](√3)2−1=2×42=4=RHS