Volume of spherical shell
V=43π[r32−r31]=43π[(3.0005)3−(3)3]...(i)
Now, finding approximate value of (3.0005).
Let y=x3
where, x=3 & Δx=0.0005
We know,
Δy=(x+Δx)3−(x)3
⇒Δy=(3.0005)3−(3)3
⇒Δy=(3.0005)3−27...(ii)
Now, Δy≈(dydx)Δx
⇒Δy≈(d(x3)dx)(0.0005)
⇒Δy≈(3x2)(0.0005)
⇒Δy≈(3(3)2)(0.0005)
⇒Δy≈(27)(0.0005)
Δy≈(27)(0.0005)
Substituting value of Δy & Δx in equtaion(ii)
⇒0.0135≈(3.0005)3−27
27+0.0135≈(3.0005)3
⇒(3.0005)3≈27.0135
Substituting approximate value of (3.0005)3 in equation (i).
V≈43π[27.0135−27.000]
V≈43π[0.0135]
V≈4π×0.0045
V≈0.0180π cm3
Hence, the approximate volume of hollow spherical shell is 0.0180π cm3