1a+(n−1)d=Tn⎡⎢
⎢
⎢
⎢
⎢
⎢⎣∵GeneralterminHP1a+(n−1)dWhereafirsttermandd=commondifference⎤⎥
⎥
⎥
⎥
⎥
⎥⎦T7=120(given)T13=138(given)T7=1a+(7−1)d120=1a+6da+6d=20→(i)T13=1a+12d138=1a+12da+12d=38→(ii)Substractequation(ii)from(i)a+12d=38−a+6d=20–––––––––––––––6d=18d=3Puttingd=3ineqn(i)a+18=20a=2Then,T4=1a+3d=12+3×3=111Ans.