The nth term of AP : tn=a+(n−1)dAccording to question, t7=34⇒a+(7−1)d=34⇒a+6d=34....(1) and t13=64⇒a+(13−1)d=34⇒a+12d=64....(2)
Subtracting equation 1 from 2, a−a+12d−6d=64−34⇒6d=30⇒d=30÷6=5
Now putting the value of d in equation 1, a+6×5=34⇒a=34−30=4
Thus, the required AP: a,a+d,a+2d,a+3d....=4,4+5,4+2×5,4+3×5....=4,9,14,19...