Tn=a+(n−1)d
T7=a+6d=34....(1)
T13=a+12d=64...(2)
solving (2) and (1) gives, d=5,a=4
Therefore the series is: 4,9,14,19,......
---------------------------------------------------------------------------------
Since a,b,c are in A.P.
2b=a+c
we have to prove that 2(a+c)=(b+c)+(a+b)
2a+2c=b+c+a+b
a+c=2b
Therefore (a+b),(b+c),(c+a) are in A.P.
----------------------------------------------------------------------------------
Let the numbers be (a−3d),(a−d),(a+d),(a+3d)
Given,
a−3d+a−d+a+d+a+3d=24
4a=24⇒a=6
(a−3d)(a−d)(a+d)(a+3d)=945
(6−3d)(6−d)(6+d)(6+3d)=945
(36−9d2)(36−d2)=945
9d4−360d2+9d4−945=0
(d2−1)(d2−39)=0
d=1,√39
∴d=1
The required numbers are (6−3(1)),(6−1),(6+1),(6+3(1))=3,5,7,9