Using the section formula, if a point (x,y) divides the line joining the points (x1,y1) and (x2,y2) internally in the ratio m:n, then (x,y)=(mx2+nx1m+n,my2+ny1m+n)
Substituting (x1,y1)≡(6,3) and (x2,y2)≡(−4,5) and m=3,n=2 in the section formula, we get the point as,
(x,y)=(3(−4)+2(6)3+2,3(5)+2(3)3+2)=(12−123+2,15+62+3)=(0,215)
The required abscissa is 0.