Find the absolue maximum value and he absolute minimum value of the following functions in the given intervals:
f(x)=x3,xϵ[−2,2]
f(x)=sinx+cosx,xϵ[0,π]
f(x)=4x−12x2,xϵ[−2,92]
f(x)=(x−1)2+3,xϵ[−3,1]
Given function is, f(x)=x3,⇒f′(x)=3x2
For maxima or minima put f′(x)=0⇒3x2=0⇒x=0ϵ[−2,2]
Now, we evaluate the value of f at critical point x=0 and at end points of the interval [-2,2].
At x=0f(0)=03=0At x=−2f(−2)=(−2)3=−8AT x=2f(2)=(2)3=8
Thus, absolute maximum value is 8 at x=2 and absolute minimum value is -8 at x=-2
Given function f(x)=sinx+cosx⇒f′(x)=cosx−sinx
For maxima or minima put f′(x)=0⇒cos−sinx=0⇒sin xcos x=1
⇒tan x=1⇒π4ϵ[0,π]
Now, we evaluate the value of f at critical point x=π4 and at the end points of the interval [0,π].
At x=π4f(π4)=sinπ4+cosπ4=1√2+1√2=√2At x=0,f(0)=sin0+cos0=0+1=1At x=πf(π)=sinπ+cosπ=0−1=−1
Thus, absolute maximum value is √2 at x=π4 and absolute minimum value is -1 at x=π
Given function is, f(x)=4x−12x2,⇒f′(x)=4−12(2x)=4−x
For maxima or minima put f′(x)=0,4−x=0⇒x=4ϵ[−2,92]
Now, we evaluate the value of f at critical point x=4 and at the end points of the interval [−2,92]
At x=4f(4)=4(4)−12(4)2=16−8=8At x=−2f(−2)=4(−2)−12(−2)2=−8−2=−10At x=92,f(92)=4(92)−12(92)2=18−818=638=7.875
Thus, absolute maximum value is 8 at x=4 and absolute minimum value is -10 at x=-2.
Given function is, f(x)=(x−1)2+3,
∴ f′(x)=2(x−1)
For maxima or minima put f′(x)=0⇒2(x−1)=0⇒x=1
Now, we evaluate the value of f at critical point x=1 and at the end points of the interval [-3,1].
At x=1f(1)=(1−1)2+3=3AT x=−3f(−3)=(−3−1)2+3=19
Thus, absolute maximum value is 19 at x=-3 and absolute minimum value is 3 at x=1