wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the absolue maximum value and he absolute minimum value of the following functions in the given intervals:

f(x)=x3,xϵ[2,2]

f(x)=sinx+cosx,xϵ[0,π]

f(x)=4x12x2,xϵ[2,92]

f(x)=(x1)2+3,xϵ[3,1]

Open in App
Solution

Given function is, f(x)=x3,f(x)=3x2
For maxima or minima put f(x)=03x2=0x=0ϵ[2,2]
Now, we evaluate the value of f at critical point x=0 and at end points of the interval [-2,2].
At x=0f(0)=03=0At x=2f(2)=(2)3=8AT x=2f(2)=(2)3=8
Thus, absolute maximum value is 8 at x=2 and absolute minimum value is -8 at x=-2

Given function f(x)=sinx+cosxf(x)=cosxsinx
For maxima or minima put f(x)=0cossinx=0sin xcos x=1
tan x=1π4ϵ[0,π]
Now, we evaluate the value of f at critical point x=π4 and at the end points of the interval [0,π].
At x=π4f(π4)=sinπ4+cosπ4=12+12=2At x=0,f(0)=sin0+cos0=0+1=1At x=πf(π)=sinπ+cosπ=01=1
Thus, absolute maximum value is 2 at x=π4 and absolute minimum value is -1 at x=π

Given function is, f(x)=4x12x2,f(x)=412(2x)=4x
For maxima or minima put f(x)=0,4x=0x=4ϵ[2,92]
Now, we evaluate the value of f at critical point x=4 and at the end points of the interval [2,92]
At x=4f(4)=4(4)12(4)2=168=8At x=2f(2)=4(2)12(2)2=82=10At x=92,f(92)=4(92)12(92)2=18818=638=7.875
Thus, absolute maximum value is 8 at x=4 and absolute minimum value is -10 at x=-2.

Given function is, f(x)=(x1)2+3,
f(x)=2(x1)
For maxima or minima put f(x)=02(x1)=0x=1
Now, we evaluate the value of f at critical point x=1 and at the end points of the interval [-3,1].
At x=1f(1)=(11)2+3=3AT x=3f(3)=(31)2+3=19
Thus, absolute maximum value is 19 at x=-3 and absolute minimum value is 3 at x=1


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon