Find the absolue maximum value and the absolute minimum value of the following function in the given intervals:
f(x)=4x−12x2,xϵ[−2,92]
Given function is f(x)=4x−12x2,⇒f′(x)=4−12(2x)=4−x
For maxima or minima put f′(x)=0,4−x=0⇒x=4 ϵ[−2,92]
Now, we evaluate the value of f at critical point x=4 and at the end points of the interval [−2,92]
At x=4f(4)=4(4)−12(4)2=16−8=8At x=−2f(−2)=4(−2)−12(−2)2=−8−2=−10At x=92,f(92)=4(92)−12(92)2=18−818=638=7.875
Thus, absolute maximum value is 8 at x=4 and absolute minimum value is -10 at x=-2.