Find the absolue maximum value and the absolute minimum value of the following function in the given intervals:
f(x)=(x−1)2+3,xϵ[−3,1]
Given function is f(x)=(x−1)2+3,
∴ f′(x)=2(x−1)
For maxima or minima put f′(x)=0⇒2(x−1)=0⇒x=1
Now, we evaluate the value of f at critical point x=1 and at the end points of the interval [-3,1].
At x=1f(1)=(1−1)2+3=3AT x=−3f(−3)=(−3−1)2+3=19
Thus, absolute maximum value is 19 at x=-3 and absolute minimum value is 3 at x=1