f(x)=sin2x−cos x
f′(x)=2 sin x cos x+sin x
= sin x (2 cos x+1)
Now, f′(x)=0
⇒ sin x=0⇒x=nπ⇒x=0, π
and 2 cos x+1=0⇒cos x=−12=cos2π3
⇒ x=2π3 ∈ [0, π]
∴ f(0)=−1
and f(2π3)=(sin2π3)2−cos(2π3)=34+12=54
f(π)=sin2π−cos π=1
Hence, absolute maximum value is 54 and absolute minimum value is −1.