Find the absolute maximum and absolute minimum values of the function f given by f(x)=sin2x−cosx,x ϵ(0,π)
f(x)=sin2x−cosxf′(x)=2sinx.cosx+sinx=sinx(2cosx+1)Equating f′(x) to zero.f′(x)=0sinx(2cosx+1)=0sinx=0∴x=0,π2cosx+1=0⇒cosx=−12∴x=5π6f(0)=sin20−cos0=−1
f(5π6)=sin2(5π6)−cos(5π6)=sin2(π6)−cos(π6)=14−√32=(1−2√34)f(π)=sin2π−cosπ=1
Of these values, the maximum value is 1, and the minimum value is -1.
Thus, the absolute maximum and absolute minimum values of f(x) are 1 and -1, which it attains at x=0 and x=π.