wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the absolute maximum and minimum of function y=2cos2xcos4x.

Open in App
Solution

Given y=2cos2xcos4x
dydx=4sin2x+4sin4x
For maxima or minima
dydx=0
4(sin4xsin2x)=0
4(2sin2xcos2xsin2x)=0
4sin2x(2cos2x1)=0
sin2x=0 or 2cos2x1=0
Now, sin2x=02x=0,π,2πx=0,π2,π
2cos2x1=0cos2x=122x=π3,5π3x=π6,5π6
Min value =3
Max value =32

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon