wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the absolute maximum and minimum values of a function f given by f(x)=2x315x2+36x+1 on the interval [1,5].

Open in App
Solution

f(x)=2x315x2+36x+1
Differentiating w.r.t. x,
f(x)=6x230x+36
f(x)=0
6x230x+36=0
6(x25x+6)=0
6(x2)(x3)=0
x=2,3
Critical points are x=2,3
Finding the function's value at x=2,3 and endpoints x=1,5
f(x)=2x315x2+36x+1
f(1)=2(13)15(12)+36(1)+1=24
f(2)=2(23)15(22)+36(2)+1=29
f(3)=2(33)15(32)+36(3)+1=28
f(5)=2(53)15(52)+36(5)+1=56
Hence, the absolute maximum value is 56 at x=5 and absolute minimum value is 24 at x=1.

flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon