f(x)=2x3−15x2+36x+1
Differentiating w.r.t. x,
f′(x)=6x2−30x+36
f′(x)=0
6x2−30x+36=0
⇒6(x2−5x+6)=0
⇒6(x−2)(x−3)=0
⇒x=2,3
Critical points are x=2,3
Finding the function's value at x=2,3 and endpoints x=1,5
f(x)=2x3−15x2+36x+1
f(1)=2(13)−15(12)+36(1)+1=24
f(2)=2(23)−15(22)+36(2)+1=29
f(3)=2(33)−15(32)+36(3)+1=28
f(5)=2(53)−15(52)+36(5)+1=56
Hence, the absolute maximum value is 56 at x=5 and absolute minimum value is 24 at x=1.