Find the absolute maximum and minimum values of the function f given by f(x)=cos2x+sin x,xϵ[0,π]
Given, f(x)=cos2x+sin x,xϵ[0,π]
Now, f′(x)=2 cos x(−sin x)+cos x=−2 sin x cos x+cos x
For maximum or minimum put f′(x)=0⇒−2 sin x cos x+cos x=0
⇒cos x(−2 sin x+1)=0⇒cos x=0 or sin x=12⇒x=π6,π2
For absolute maximum and absolute minimum, we have to evaluate
f(0),f(π6),f(π2),f(π)
At x=0, f(0)=cos20+sin0=12+0=1
At x=π6, f(π6)=cos2(π6)+sinπ6=(√32)2+12=54=1.25
At x=π2, f(π2)=cos2(π2)+sinπ2=02+1=1
At x=π, f(π)=cos2π+sinπ=(−1)2+0=1
Hence, the absolute maximum value of f is 1.25 occuring at x=π6 and the absolute minimum value of f is 1 occuring at x = 0, π2 and π.
Note If close interval is given, to determine global maximum (minimum), check the value at all critical points as well as end points of a given interval.