The correct option is C ω=bv2a2
(xa)2+(yb)2=1....(1)
differentiating with respect to x.
2xa2+2yb2dydx=0
dydx=−xb2ya2......(2)
Again differentiating with respect to x.
d2ydx2=−b2a2[x(−1y2)dydx+1y]
d2ydx2=−b2a2[−x2b2y3a2+1y] using (2)
Radius of curvature , R=[1+(dydx)2]3/2d2ydx2
R=[1+(x2b2y2a2)2]3/2−b2a2[−x2b2y3a2+1y]
At x=0,R=−a2b2y
using (1) for x=0,y=bor−b
thus , R=a2b
∴ Acceleration , ω=v2R=bv2a2