Find the accelerations a1,a2,a3 of the three blocks shown in figure (6-E8) if a horizontal force of 10 N is applied on (a) 2 kg block, (b) 3 kg block (c) 7 kg Block. Take g = 10m/s2
Given
μ1=0.2μ2=0.3μ3=0.4
(a) When the 10N forc is applied on 2 kg block, it experiences maximum frietional force.
μR1=μ×2g=(0.2)×20=4N from the 3 kg block So, the 2 kg block experiences a net force
= 10-4 = 6N
So, a1=62=3m/s2
But for the 3 kg block, (Fig-3), the frictional force from 2 kg block (4N) becomes the driving force and the maximum frictional force between 3 kg and 7 kg blocks.
μ2=R2=(0.3)×5kg=15N
So, the 3 kg block cannot move relative to the 7 kg block, the 3 kg block and the 7 kg block both will have same acceleration (a2=a3) which will be due to the 4N force because there is no friction form the floor.
∴a2=a3=410=0.4m/s2
(b) When the 10N force is applied to the 3 kg block, it can experience maximum frictional force of 15 + 4 = 19 N From the 2 kg block and 7 kg block.
So, it can not move with respect to them. As the floor is frictionless, all the three bodies will move together.
∴a1=a2=a3=1012=(56) m/s
(c) Similarly it can be proved taht when the 10N force is applied to the 7 kg block, all three blocks will move together.
Again a1=a2=a3=(56)m/s