The correct option is C θ =cos−1(5√321)
Comparing the given equations of the planes with the equations
A1x+B1y+C1z+D1=0 and A2x+B2y+C2z+D2=0We get A1=3, B1=−6, C1=2A2=2, B2=2, C2=−2
The angle between these planes is given bycosθ = ⎛⎜⎝A1×A2+B1×B2+C1×C2(√A12+B12+C12)×(√A22+B22+C22)∣∣
∣∣
cosθ = ⎛⎜⎝3×2+(−6)×2+2×(−2)(√32+(−6)2+22)×(√22+22+(−2)2)∣∣
∣∣cosθ =5√321θ =cos−1(5√321)