Find the angle between each of the following pairs of straight lines:
(i) 3x+y+12=0 and x+2y−1=0
(ii) 3x−y+5=0 and x−3y+1=0
(iii) 3x+4y−7=0 and 4x−3y+5=0
(iv) x−4y=3 and 6x−y=11
(v) (m2−mn)y=(mn+n2)x+n2 and (mn+m2)y=(mn+n2)x+m3.
(i) The given equations are
3x+y+12=0
x+2y−1=0
Writing the equation in the form
y=mx+c
3x+y+12=0
y=−3x−12
⇒m1=−3
Also,
x+2y−1=0
2y=1−x
y=12−x2
⇒m2=−12
Angle between the lines
tan θ=∣∣m1−m21+m1m2∣∣
=∣∣ ∣∣−3−(−12)1+(−3)(−12)∣∣ ∣∣
=∣∣∣−3+121+32∣∣∣=∣∣∣−6+1222+32∣∣∣
=∣∣−55∣∣=1
⇒angle=π4=45∘
(ii) Finding slopes of the lines by converting the equation in the form
y=mx+c
3x−y+5=0
⇒y=3x+5
⇒m1=3
Also,
x−3y+1=0
3y=x+1
y=x3+13
⇒m2=13
Thus angle between the lines is
tan θ=∣∣m1−m21+m1m2∣∣
=∣∣∣3−131+313∣∣∣=∣∣∣9−131+1∣∣∣
=∣∣∣832∣∣∣=∣∣86∣∣=43
⇒θ=tan−1(43)
(iii) 3x+4y−7=0 and 4x−3y+5=0
To find angle between the lines, convert the equations in the form
y=mx+c
3x+4y−7=0
⇒4y=−3x+7
y=−34x+74
m1=−34
Also, 4x−3y+5=0
⇒3y=4x+5
⇒y=43x+53
⇒m1=43
The angle between the line is given by
tan θ=∣∣m1−m21+m1m2∣∣
=∣∣ ∣∣−34−431+(−3)4(43)∣∣ ∣∣=∣∣∣−34−431−1∣∣∣
⇒θ=π2 or 90∘
(iv) x−4y=3 and 6x−y=11
To find angle convert the equation in the form y=mx+c
x−4y=3
⇒4y=x−3
y=x4−34
⇒m1=14
Also, 6x−y=11
y=6x−11
⇒m2=6
Thus, angle between the lines is
tan θ=∣∣m1−m21+m1m2∣∣
=∣∣∣14−61+14×6∣∣∣
=∣∣∣−2341+32∣∣∣=∣∣∣−23452∣∣∣
⇒θ=tan−1 (2310)
(v) (m2−mn)y=(mn+n)2x+n2 and (nm+m2)y=(mn+n2)x+m3
Converting the equation in the form
y=mx+c
y=(mn+n2)m2−mnx+n3(m2−mn)
⇒m1=mn+n2m2−mn
Also, y=(mn−n2)nm+m2x+m3nm+m2
⇒m2=mn−n2nm+m2
Thus, angle between 2 lines is tan θ
⇒tan θ=∣∣m1−m21+m1m2∣∣
=∣∣ ∣∣(mn+n2m2−mn)−(mn−n2nm+m2)1+(mn+n2m2−mn)(mn−n2nm+m2)∣∣ ∣∣
=∣∣m2n2+m3n+n3m+n2m2−m3n+m2n2+n2m2−mn3m3n+m4−m2n2−m3n+m2n2−nm3+mn3−n4∣∣
=∣∣4m2n2m4−n4∣∣
⇒θ=tan−1∣∣4m2n2m4−n4∣∣