Find the angle between the following pair of lines: (i) x−22=y−15=z+3−3 and x+2−1=y−48=z−54
(ii) x2=y2=z1 and x−54=y−21=z−38
Open in App
Solution
(i)
Let →b1 and →b2 be the vectors parallel to the pair of lines, x−22=y−15=z+3−3 and x+2−1=y−48=z−54 respectively, then →b1=(^2i+5^j−3^k) and →b2=(−^i+8^j+4^k) ∣∣→b1∣∣=√(2)2+(5)2+(−3)2=√38 ∣∣→b2∣∣=√(−1)2+(8)2+(4)2=√81=9 →b1.→b2=(^2i+5^j−3^k).(−^i+8^j+4^k) =2(−1)+5×8+(−3).4=−2+40−12=26 The angle θ between the given pair of lines is given by the relation, ⇒cosθ=∣∣
∣∣→b1.→b2∣∣→b1∣∣∣∣→b2∣∣∣∣
∣∣ ⇒cosθ=269√38 ⇒θ=cos−1(269√38)
(ii)
We have, →b1=(^2i+2^j+^k) →b2=(4^i+^j+8^k) ∴∣∣→b1∣∣=√(2)2+(2)2+(1)2=√9=3 ∣∣→b2∣∣=√(4)2+(1)2+(8)2=√81=9 →b1.→b2=(^2i+2^j+^k).(4^i+^j+8^k) =2×4+2×1+1×8=8+2+8=18 If θ is the angle between the given pair of lines, then cosθ=∣∣
∣∣→b1.→b2∣∣→b1∣∣∣∣→b2∣∣∣∣
∣∣ ⇒cosθ=183×9=23 ⇒θ=cos−1(23)