wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the angle between the following pair of lines:
(i) x22=y15=z+33 and x+21=y48=z54
(ii) x2=y2=z1 and x54=y21=z38

Open in App
Solution

(i)
Let b1 and b2 be the vectors parallel to the pair of lines,
x22=y15=z+33 and
x+21=y48=z54 respectively,
then b1=(^2i+5^j3^k) and b2=(^i+8^j+4^k)
b1=(2)2+(5)2+(3)2=38
b2=(1)2+(8)2+(4)2=81=9
b1.b2=(^2i+5^j3^k).(^i+8^j+4^k)
=2(1)+5×8+(3).4=2+4012=26
The angle θ between the given pair of lines is given by the relation,
cosθ=∣ ∣b1.b2b1b2∣ ∣
cosθ=26938
θ=cos1(26938)

(ii)
We have,
b1=(^2i+2^j+^k)
b2=(4^i+^j+8^k)
b1=(2)2+(2)2+(1)2=9=3
b2=(4)2+(1)2+(8)2=81=9
b1.b2=(^2i+2^j+^k).(4^i+^j+8^k)
=2×4+2×1+1×8=8+2+8=18
If θ is the angle between the given pair of lines, then cosθ=∣ ∣b1.b2b1b2∣ ∣
cosθ=183×9=23
θ=cos1(23)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications of Cross Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon