Find the angle between the following pair of lines: (i) →r=2^i−5^j+^k+λ(3^i−2^j+6^k) and →r=7^i−6^k+μ(^i+2^j+2^k)
(ii) →r=3^i+^j−2^k+λ(^i−^j−2^k) and →r=2^i−^j−56^k+μ(^3i−5^j−4^k)
Open in App
Solution
(i)
If θ be the angle between the given lines. Then cosθ=∣∣
∣∣→b1.→b2∣∣→b1∣∣∣∣→b2∣∣∣∣
∣∣ where →b1=(3^i+2^j+6^k) and →b2=(^i+2^j+2^k) ∴∣∣→b1∣∣=√32+22+62=7 ∣∣→b2∣∣=√12+22+22=3 →b1.→b2=(3^i+2^j+6^k).(^i+2^j+2^k) =3×1+2×2+6×2=3+4+12=19 ⇒cosθ=197×3 ⇒θ=cos−1(1921)
(ii)
The given lines are parallel to the vectors,
→b1=(^i−^j−2^k) and →b2=(3^i−5^j−4^k) respectively. ∴∣∣→b1∣∣=√(1)2+(−1)2+(−2)2=√6