Find the angle between the lines x+33=y−15=z+34 and x+11=y−41=z−52 .
Let(a1,b1,c1)=(3,5,4) and (a2,b2,c2)=(1,1,2)cos θ=a1a2+b1b2+c1c2√a21+b21+c21√a22+b22+c22=3+5+8√9+25+16√1+1+4=16√50√6=1610√3⇒θ=cos−1(85√3)
Find the angle between the following pair of lines
x−22=y−15=z+3−3 and x+2−1=y−48=z−54
x2=y2=z1 and z−54=y−21=z−38