Find the angle between the lines where direction ratios are (a, b, c) and (b - c, c - a, a - b).
The direction ratios of the two lines are (a, b, c) and (b - c, c - a, a -b).
Let θ be the acute angle between the two lines, then
cos θ=∣∣
∣∣a(b−c)+b(c−a)+c(a−b)√a2+b2+c2√(b−c)2+(c−a)2+(a−b)2∣∣
∣∣∵ cos θ=∣∣
∣∣a1a2+b1b2+c1c2√a21+b21+c21√a22+b22+c22∣∣
∣∣=∣∣
∣∣ab−ac+bc−ab+ca−bc√a2+b2+c2√(b−c)2+(c−a)2+(a−b)2∣∣
∣∣=0⇒ cos θ=0⇒θ=π2=90∘