Given equation
3l+m+5n=0 &
6mn−2nl+5lm=0-----(2)
m=−(3l+5n)−−−−(1)
Sub (1) in (2) 6[−(3l+5n)]n−2ln+5l[−(3l+5n)]=0
(−18l−30n)n−2nl−15l2−25ln=0
−18ln−30n2−2ln−15l2−25ln=0
−15l2−45ln−30n2=0⇒l2+3ln+2n2=0
l(l+2n)+n(l+2n)=0⇒(l+n)(l+2n)=0
∴l=−n & l=−2n
from (1) m=−(3l+5n) m=−(3l+5n)
l=−n⇒m=−(−3n+5n) l=−2n⇒m=−(3(−2n)+5n)
m=−2n m=n
l=−n & m=−2n l=−2n & m=n
l−1=n1 m−2=n1 l−2=n1 m1=n1
(l1,m1,n1)=(−1,−2,1) (l2,m2,n2)=(−2,1,1)
Angle between direction cosines are
cosθ=l1l2+m1m2+n1n2√l21+m21+n21√l22+m22+n22
=(−1)(−2)+(−2)(1)+1(1)√(−1)2+(−2)2+12√(−2)2+12+12
=+2−1+1√1+4+14+1+1=1√6.√6=16
cosθ=16
θ=cos−1(16).